

Robotic-assisted vs. manual total hip arthroplasty – patient reported outcome measures at twelve months

Mohannad Ammori Liam Lennox Nicholas Diston Heather Tring James Dixon Chris Munro Andrew Johnston

Department of Trauma & Orthopaedics, Woodend Hospital, Eday Road, Aberdeen, AB15 6XS

Introduction	Results

Robotic-assistance enhances the accuracy of component positioning in total hip arthroplasty (THA) [1]. We aimed to explore the consequential impact on patient outcomes. The objectives of this study were to compare robotic-assisted against manual THA for the following patient reported outcome measures (PROMs) at two-to-three and twelve months post-operatively:

- Oxford Hip Score (OHS)
- EQ-5D-3L
- EQ-VAS

Robotic-assistance, compared against manual THA, was associated with an enhanced OHS, EQ-5D-3L and EQ-VAS at two to three months and twelve months after surgery (Figure 1). Robotic-assistance was confirmed to be an independent predictor of a greater OHS at two to three months (*p*-value 0.008, Odds Ratio 1.965, 95% Confidence Intervals [CI] 1.193 – 3.226) and twelve months (*p*-value 0.002) on a multivariate ordinal regression analysis (Table 2).

Approach

50 —

p-value 0.045

Methods

Between 1st May 2021 and 30th June 2022, 272 patients who underwent 275 primary THAs were identified from the local registry database and confirmed to be suitable for a complete case analysis. Data were prospectively collected, and included patient demographics, Body Mass Index (BMI), American Society of Anaesthesiologists (ASA) grade, surgical approach, robotic-assistance, OHS, EQ-5D-3L and EQ-VAS pre-operatively, at two to three months and at twelve months post-operatively.

We analysed the data using the software package SPSS 22 (Chicago, Illinois, USA). Shapiro-Wilk test was used to determine whether the data was parametric or non-parametric. The Chi-Squared test, Mann-Whitney U test, Kruskal-Wallis test and Spearman's Correlation were used. Variables identified with a *p*-value of less than 0.1 were included in the multivariate ordinal regression to identify the independent predictors of post-operative OHS. Significance was accepted at a *p*-value of less than 0.05.

	Patient Characteristics			
	Robotic-Assisted	Manual	<i>p</i> -value	
Patients	121	151		
Total Hip Arthroplasties	122	153		

Figure 2: Oxford Hip Score for direct anterior, posterior and anterolateral approaches.

The Kruskal-Wallis test identified a significant difference in OHS between the three surgical approaches. The direct anterior approach (DAA) demonstrated a numerically greater OHS scores at two to three months, compared against the posterior and anterolateral approaches.

Multivariate Ordinal Regression

Variable	<i>p</i> -value	Odds Ratio	95% CI
Sex (Female vs. Male)	0.592	0.853	0.476 – 1.527
ASA	0.160	0.700	0.426 – 1.151
BMI	0.177	0.962	0.909 – 1.018

Age	69 (64 – 74)	70 (62 – 79)	0.114
Sex (Female vs. Male)	74 (61) vs. 48 (39)	90 (59) vs. 63 (41)	0.758
ASA	2 (2 – 2)	2 (2 – 2)	0.944
BMI	28 (26 – 32)	29 (26 – 33)	0.399
Indication (OA vs. Other)	118 (97) vs. 3 (2)	146 (95) vs. 7 (5)	0.358
Surgical Approach			< 0.001
Direct Anterior	20 (16)	4 (3)	
Anterolateral	26 (21)	78 (51)	
Posterior	76 (62)	71 (46)	

Table 1: Summary of patient characteristics.

Data representative of number (percentage) or median (interquartile range)

Pre-assessment OHS	0.068	1.037	0.997 - 1.079
Robotic-Assisted vs. Manual	0.002	2.463	1.374 - 4.405

Table 2: Multivariate ordinal regression of Oxford Hip Score at twelve months.

Discussion

The combination of the DAA and robotic-assistance in THA may enhance PROMs, both in the early post-operative period and in the long term. Robotic-assistance enhanced the OHS, EQ-5D-3L and EQ-VAS at two to three months, and at twelve months after primary THA. There was a preferential use for robotic-assistance in patients undergoing a DAA (Table 1) to ensure accurate acetabular component positioning, as this technique was relatively new at our institution. Robotic-assistance has previously been associated with greater functional outcomes, including the Harris Hip Score [1] and the Forgotten Joint Score [2]. However, there were no randomised controlled trials at the time. Recruitment for the Robotic Arthroplasty: a Clinical and cost Effectiveness Randomised controlled trial for Hips (RACER-HIP) ended towards the end of last year, and we are awaiting the results [3].

Conclusion

Robotic-assistance was superior to manual THA in enhancing PROMs, including the OHS, EQ-

Figure 1: Patient-reported outcome measures for manual vs. robotic-assisted total hip arthroplasty.

5D-3L and EQ-VAS in the first twelve months after surgery. A greater sample size of DAA THA

is needed to determine the superiority of this technique in enhancing PROMs early post-

operatively.

References

- Ng N, Gaston P, Simpson PM, Macpherson GJ, Patton JT, Clement ND. Robotic arm-assisted versus manual total hip arthroplasty : a systematic review and meta-analysis. Bone Joint J. 2021 Jun;103-B(6):1009-1020. doi: 10.1302/0301-620X.103B6.BJJ-2020-1856.R1. PMID: 34058875.
- Clement ND, Gaston P, Bell A, Simpson P, Macpherson G, Hamilton DF, Patton JT. Robotic arm-assisted versus manual total hip arthroplasty. Bone Joint Res. 2021 Jan;10(1):22-30. doi: 10.1302/2046-3758.101.BJR-2020-0161.R1. PMID: 33380216; PMCID: PMC7845457.
- The National Institute for Health and Care Research. Robotic Arthroplasty: a Clinical and cost Effectiveness Randomised controlled trial for Hips (RACER-HIP). <u>https://www.fundingawards.nihr.ac.uk/award/NIHR131407</u> (date last accessed 30 April 2024).